

PG07BP Guideline on pre-anaesthesia consultation and patient preparation Background Paper 2024

Short title: Pre-anaesthesia consultation BP

1. Purpose of review

PG07 Guideline on pre-anaesthesia consultation and patient preparation (formerly PS07 Recommendations for pre-anaesthesia consultation and patient preparation) was last reviewed in 2014. The most recent review has incorporated the following events:

- Acknowledgement of scientific evidence of the benefits of timely preoperative assessment and preoperative management of issues for the purposes of optimisation.
- Fellow input regarding updating of the fasting appendix.

2. Background and discussion

Update

2.1 In the previous version of PG07, an important distinction was made between an "assessment" and a "consultation". One of the definitions of "consultation" from the Macmillan Dictionary is:

"a meeting with an expert or a professional person to get advice or to discuss a problem, especially a meeting with a doctor".

This was thought to cover the intent of the document and differentiate the pre-anaesthesia consultation from a pre-admission assessment, which may be carried out by another medical practitioner (who may be a trainee from another specialty), a nurse practitioner or administrative staff.

2.2 The paediatric patient

There are specific age dependent considerations with respect to the pre-anaesthesia assessment and preparation of the paediatric patient. The location, nature and timing of the medical consultation will need to consider the developmental stage, the level of awareness and understanding of the procedure as well as the anxiety level of the patient and the family. The consultation may vary from full informed consent with a child (although ability to sign consent will be determined by jurisdictional requirements), to consultation independent of the child due to age, understanding or anxiety levels. The assessment should build rapport and minimise anxiety in a manner which provides developmentally appropriate understanding of the anaesthetic process (refer to <u>PG29(A) Guideline</u> for the provision of anaesthesia care to children).

3. Appendix 1 - Fasting guideline

The accompanying appendix on fasting is intended to provide guidance to minimise aspiration risk and adverse events whilst also improving physiological outcomes and patient comfort.

This guidance can serve as an aid at the local level, to the development of policies, audits of practice, and delivery of education to staff, patients and family. An emphasis is placed on avoidance of excessive time deprived of oral clear liquids.

Since 2005 there has been a progressive shift in the traditional conservative nature of oral intake regimens towards more liberal regimens, for both children and adults, however, it may still be a challenge to deliver this in practice.

Literature has been searched until June 2024. Databases searched included PubMed, MEDLINE and Google Scholar for articles in the English language with a focus on reviews, systematic reviews, policy statements, protocols, expert recommendations and guidelines. Boolean search terms were limited to either 'Title' or 'Title/abstract' including: "preoperative fasting guidelines," "preoperative fasting policy," "preoperative nutrition guidelines", "perioperative management OR care OR outcomes", "surgery", "procedures", "anaesthesia", "glucagon-like peptide 1 agonists", "bariatric surgery", "diabetes mellitus", "siptilsend", "gastric ultrasound". Professional organisations' guidelines and recommendations were also reviewed as were selected conference proceedings.

Recommendations for fasting durations in the accompanying guideline are based on the best current available evidence and are consistent with international guidelines published by national societies in Europe, the United Kingdom, North America, and Australia and New Zealand. ^(1, 2, 3, 4, 5, 6, 7). Additional expertise in paediatrics was provided by the Society for Paediatric Anaesthesia in New Zealand and Australia (SPANZA).

- 3.1 In 2017, concerns were raised regarding the currency of the then ANZCA fasting guidelines (contained in PG15(POM) Guideline for the perioperative care of patients selected for day stay procedures) including whether ASA 3 and 4 patients were more at risk, and the possibility of prolonged fasting resulting in potential deleterious effects on patients. Traditionally, excessive fasting had not been associated with harm ⁽⁸⁾.
- 3.2 In 2023 the American Society of Anesthesiologists (ASA) and in 2022 the European Society of Anaesthesiology and Intensive Care (ESAIC) produced updated fasting guidelines ^(1, 9) based on consensus and emerging evidence, moving on from their earlier iterations. The emphasis is now balanced towards the need to avoid prolonged fasting, and indeed to encourage intake of clear liquids prior to anaesthesia for adults and children ^(1, 5, 6, 10). This is based on evidence for a similar level of safety, improved patient comfort, and a reduction in negative outcomes (such as thirst, nausea, vomiting, metabolic derangement) by permitting a more liberal approach to clear liquids and encouraging a later time for the ingestion of water (or clear liquids). ^(8, 11, 12, 13)
- 3.3 It should be noted that while these consensus guidelines for adults have remained with a '6 and 2 hour' rule, many of these bodies are also in the process of reviewing their next set of guidance for liquids in light of evidence similar to that presented here. The recommended timing of ingestion for non-clear liquids and solids remains unchanged at 6 hours for adults ^(3, 4, 5).
- 3.4 With emerging evidence there is a need to ensure that any recommendations remain contemporary. Currently there is interest in many centres around the world in employing a 'Sip Til Send' or 'Sip Til Leave Home' protocol, including in Australia and New Zealand ^(14, 15). Significant consideration was given to recommending a reduction of the fasting time for clear fluids to 1 hour based on the increasing uptake of liberal clear liquid strategies such as 'SipTilSend'. Although this may be reasonable in a variety of settings, implementation should be targeted (eg to appropriate emergency surgery patients where cancellations and delays may be frequent ⁽¹⁶⁾), as the thresholds have not yet been met for consensus statements to encourage routine reductions less than 2 hours for ingestion of clear liquids in adults. In reviewing safety with a more permissive regime of later consumption of clear liquids in various settings for adult patients, the document development group has concluded that it is 'non-inferior' in terms of rates of regurgitation and aspiration. As volume of prospective data and reliability of evidence increases, the strength of its recommendation may change ^(8, 14, 17). It

should be noted that any change in practice from well-embedded protocols requires careful implementation ^(14, 18, 19).

- 3.5 Specific mention has been made of "chewing gum". Such patients were previously regarded as unfasted and their procedures either deferred or cancelled. It has subsequently been recognised that chewing gum does not increase gastric volume nor have any significant effect on gastric pH ^(1, 20). Consequently, this no longer constitutes an indication for delaying or cancelling their procedure. However, it is essential to remove chewing gum and boiled sweets prior to induction, to avoid them being inhaled or ingested.
- 3.6 It is accepted there may be variation about the use of such 'fluids' as ice blocks and jelly especially in endoscopic settings. For simplicity, safety and to avoid ambiguity, at this stage the ingestion of jelly and all brands of ice blocks are not encouraged in a routine list of clear liquids prior to surgery in adults and children, given that there are many alternative liquids including just water that have more established risk-benefit profiles.
- 3.7 Patient, procedural and pharmacological factors contributing to delayed gastric emptying in individual situations should guide the optimal time for cessation of intake of solids and liquids, use of prokinetic agents, as well as selection of anaesthesia technique. Although clear liquids have a rapid gastric transit time, there are conditions that require special consideration, caution or variation. These include emergency abdominal surgery, patients with restricted input for therapeutic purposes, prior bariatric surgery (involving altering the volume or shape of the stomach), previous lower oesophageal surgery, achalasia, taking medications used for diabetes management and weight loss which slow absorption of gastric contents (eg glucagon-like peptide-1 receptor agonists ^(21, 22, 23)) and recent intake of high dose opioids.
- 3.8 There is increasing consideration of point of care testing in the form of gastric ultrasound to provide an indication of volume and composition of residual gastric content and thus aspiration risk. However, gastric POCUS requires training and validation of skills ^(24, 25, 26).
- 3.9 Women in active labour may have their intake requirements decided on a case-by-case basis, with consensus from their multi-disciplinary carers in anaesthesia, obstetrics and midwifery. With careful risk assessment, 'SipTilSend' has been described ⁽¹⁹⁾.
- 3.10 International guidelines for infants, children and teenagers have been thoroughly revised with explanations for later permission of ingestion of matter according to whether breast milk, formula milk, other non-human milk (such as cow's milk), water, other clear liquids and other consistencies of fluids. The prolonged deprivation of oral clear liquids and carbohydrates has more significant metabolic and psychological consequences for young children ^(7, 9, 27, 28).
- 3.11 Studies have compared clear liquids containing simple (eg. glucose) versus complex (eg. maltodextrin) carbohydrates and clear liquids with or without proteins. There is evidence that simple carbohydrates may increase gastric emptying and further work is recommended to explore this in specific circumstances, with caution in patients with diabetes mellitus. There is little evidence to actively exclude carbonated clear liquids from intake ^(1,24).
- 3.12 Interruptions to enteral nutrition in intensive care patients result in significant calorie deficits that are associated with increased complications. In a patient with a secured and protected airway enteral feeding should continue prior to surgery or other interventional procedures unless the procedures are intra-abdominal, intra-thoracic or involve airway management or there are other specific requirements. In these situations, enteral feeds should be ceased for 6 hours with some institutions recommending 4 hours ⁽²⁹⁾.

4. Appendix 2 - Breastfeeding and anaesthesia

Following publication of "Guideline on anaesthesia and sedation in breastfeeding women 2020"¹ by the Association of Anaesthetists of Great Britain and Ireland (AAGBI) ANZCA considered whether it should be endorsed. After assessment in accordance with <u>CP25(G) Policy on endorsement of externally developed</u> <u>guidelines</u>, endorsement was rejected.

Instead, it was decided to address the issue by developing an advisory document to be incorporated as a separate Appendix into *PG07 Guideline on pre-anaesthesia consultation and patient preparation*. The aim being to support anaesthetists in both the Australian and New Zealand context to provide contemporary pre-anaesthesia information and peri-operative care to patients intending to breastfeed following their procedure.

In Australia the Therapeutic Guidelines – Pregnancy and Breastfeeding provide evidence-based recommendations regarding the use of medications during breastfeeding (Table 1).² In New Zealand, Medsafe provides product information for individual medications.³ The United States-based Drugs and Lactation Database provides drug-specific recommendations based on drug properties, even when lactation-specific pharmacokinetic evidence is lacking.⁴

Most opioid medications pass into breast milk with the potential to cause respiratory depression and sedation in infants. There is conflicting information regarding use of specific opioid medications during breastfeeding, particularly codeine and tramadol, which have active metabolites and are subject to pharmacogenetic variations in metabolism. In 2017 The Food and Drug Administration (FDA, United States) recommended against the use of tramadol during breastfeeding. The Therapeutic Guidelines (Australia) consider tramadol compatible with short-term use during breastfeeding. The Society for Paediatric Anaesthesia in New Zealand and Australia (SPANZA)⁵ and the ANZCA Obstetric Anaesthesia Special Interest Group⁶ **support the continued careful use of tramadol while breastfeeding.** Therapeutic Guidelines and accompanying product information recommend against the use of codeine during breastfeeding.^{2,3}

At the time of writing, there was considerable community debate around the language used to describe breastfeeding. The words "breastfeeding" and "breast milk" have been used to reflect the correct anatomical terminology. It is understood that some may disagree with the terminology used.

5. Appendix 3 - Smoking

Tobacco is a major global health problem, with 8.5 million deaths from the world's 1.1 billion smokers in 2019 alone¹. Globally, at least 310 million people undergo major surgery each year (approximately 1 in 25 people), with rates of major morbidity estimated to be 15%². Smokers are at increased risk of perioperative respiratory, cardiac and wound-related complications and quitting smoking may reduce these risks³. Evidence suggests that the perioperative period is a "teachable moment" when many smokers quit or attempt to quit smoking, sometimes permanently^{4,5}. Increasingly, patients present for surgery who use a variety of different electronic cigarette (e-cigarette) devices that contain a multitude of different vaping liquids⁶.

5.1 Review of issues considered

5.1.1 The burden of tobacco in Australia and New Zealand.

Each year, approximately 19,000 deaths are attributable to tobacco in Australia, representing 11.1% of all deaths⁷. In New Zealand, tobacco is attributable to 13.9% of all deaths and a total of 4,790 deaths annually⁷. In both countries, tobacco use has declined

over the past decade, but e-cigarette use is increasingly common, particularly in New Zealand, where 8.3% of the adult population were daily users in 2021/22⁸.

A 2019 report on the cost of smoking to the Australian economy estimated \$19.2 billion in net tangible costs⁹. Smokers are likely to be over-represented on operating lists for vascular, cardiac and cancer surgery. Estimates vary, but conservatively, half of all smokers will eventually die as a result of their smoking unless they quit¹⁰. Smokers lose at least one decade of life expectancy compared with those who have never smoked¹¹. Cessation before the age of 40 years reduces the risk of death associated with continued smoking by about 90 per cent¹¹.

5.1.2 Prevalence of quitting before surgery.

The underlying successful quit rate in the general population of smokers is estimated to be as low as 2 per cent per annum¹². Although quit attempts occur commonly with 31 per cent of Australian smokers making at least one per year¹³, tobacco addiction is characterised by high rates of relapse¹⁴.

Little is known about quitting before surgery in Australia and New Zealand but this likely varies according to patient (age, amount smoked etc.) and surgical factors (major/minor/cancer-related etc.), as well as the availability of preoperative cessation support¹⁵. It is unclear to what extent smokers see surgery as an opportunity to permanently quit for better health, versus simply interrupting their smoking during the perioperative period in accordance with clinician advice to obtain shorter-term benefits such as reduced wound complications.

In the United States, having surgery doubles the spontaneous quit rate in older adults (aged >50 years) compared to those not having surgery and approximately 8 per cent of all quitting is related to surgery⁵.

5.1.3 Prevalence and effect of physician advice to quit before surgery.

Current evidence indicates advice to quit is inconsistently given. At one New South Wales preoperative clinic 39 per cent of smoking patients had received quit advice from an anaesthetist¹⁶. Myles et al reported surgeons advised quitting in only 6.5 per cent of cases in a sample of 200 ambulatory surgical patients at a Melbourne tertiary hospital, slightly more frequent than general practitioners (3 per cent)¹⁷. Webb et al reported that less than 10 per cent of patients who smoked recalled advice from an anaesthetist to quit when surveyed on the day of surgery with rates of surgical quit advice at 22.6 per cent and general practitioner advice at 16.5 per cent⁴. When quit advice from clinicians occurred, the chance of patients stopping smoking before surgery was doubled⁴. Such findings are consistent with evidence from other patient settings that brief quit advice from clinicians is moderately effective in increasing cessation¹².

5.1.4 Evidence that smoking worsens surgical outcomes.

A recent meta-analysis found that smoking was associated with (within 30-days of surgery): General morbidity increased 52%, wound complications increased 215%, pulmonary complications increased 73%, admission to intensive care unit increased 60% and even neurological complications increased 38%¹⁸. Smoking on the day of surgery is particularly associated with almost double the incidence of surgical site infections, compared to similar smokers who abstained on the day of surgery¹⁹.

Second-hand smoke exposure in children increases the risk of perioperative respiratory adverse events such as laryngospasm²⁰. Risks vary with exposure, as Western Australian children exposed to both parents smoking had over double the risk of those from non-smoking households; compared to maternal only smoking (risks increased by 87%) and paternal only smoking (risks increased by 19%)²¹. In adults, second-hand smoke exposure resulted in 51% more postoperative morbidity compared to non-exposed adults²².

From the limited available data on wound healing, vaping is not safer than tobacco smoking²³. Nicotine-containing vapes are peripheral vasoconstrictors, decreasing skin blood flow. Anaesthesia in e-cigarette users with acute vaping-related lung injury is characterised by increased airway reactivity, hypoxia, higher oxygen requirements and the possibility of ongoing mechanical ventilatory support²⁴.

5.1.5 Evidence that smoking cessation before surgery improves surgical outcomes.

Data on improved outcomes from quitting smoking comes from both experimental and clinical settings²⁵. In continued smokers, the experimental wound infection rate was 12 per cent compared to 2 per cent in never-smokers, while the infection rate of recent quitters was comparable with never-smokers²⁵.

A meta-analysis of randomised trials of preoperative smoking cessation interventions found that interventions such as nicotine replacement therapy (NRT) and counselling more than halved the complication rate, while wound complications were almost 70% lower²⁶. The greatest complication reductions were achieved in those trials that resulted in more cessation overall, and these generally were more intensive interventions (multiple counselling sessions plus NRT).

5.2 When to quit? Brief smoking cessation

Studies have consistently found that longer abstinence periods exceeding 4 weeks are consistently associated with better postsurgical outcomes³. Improved function occurs over time:

- 5.2.1 Quitting for one day will lower carboxyhaemoglobin and nicotine levels and could be expected to improve tissue oxygen delivery²⁷. Higher expired carbon monoxide levels are significant predictors of ST depression in patients during general anaesthesia, even in the absence of ischaemic heart disease²⁸. Smokers who smoke on the day of surgery are significantly more likely to have infections than even those abstaining for a few days¹⁹.
- 5.2.2 Quitting for as little as three weeks was shown to improve wound healing²⁹
- 5.2.3 After quitting for six to eight weeks sputum volumes are not increased compared to nonsmokers³⁰ and pulmonary function is improved³¹
- 5.2.4 Immune function is significantly recovered by six months after quitting³²

Concerns that stopping smoking within 8 weeks prior to surgery increases postoperative pulmonary complications (PPC)³³⁻³⁵ have been discredited by more recent data^{36,37} and ought not to be a reason to advise continued smoking³⁸. The mechanism for increased PPCs was speculated to be that recent quitters experience mucous hyper-secretion at exactly the same time they lose the cough promoting effects of cigarettes^{33,39}. While longer quitting is best, smokers with only a short time available to quit before surgery should not be dissuaded to do so⁴⁰.

5.3 Assisting patients to quit before surgery

The preoperative period is an important opportunity to increase smoking cessation, given the reduction of adverse surgical outcomes and the increased willingness of many smokers to improve their health before surgery. Although the majority of ex-smokers achieve abstinence without treatment⁴¹, interventions by healthcare providers and health services increase quitting attempts and quitting success³⁸. The number of new ex-smokers in any given year is the number of quit attempts multiplied by the quit success rate, so increasing the number of quit attempts as well as utilising tools to improve the success rate make important contributions to health.

Forthcoming surgery is a time of increased quitting activity, with one recent study of patients on a waitlist showing 33% of smokers making at least one quit attempt lasting 24-hours or more without any cessation assistance⁴². Even in the absence of quit support, 32% of these attempts led to abstinence for at least 24-hours on the day of surgery. In the presence of an intervention to increase quitting (a telephone offer of nicotine replacement therapy and Quitline referral), attempts increased to 55.5%, of which 38% succeeded in abstinence by surgery⁴².

The success of smoking cessation interventions before surgery depends on the duration and intensity of treatment. Those offering 4-weeks or more of weekly preoperative counselling plus cessation pharmacotherapy demonstrate a ten-fold increase in success rate over low-intensity interventions, involving just one or two counselling sessions with or without pharmacotherapy²⁶. Despite this, there is considerable evidence for the effectiveness of physician brief advice in general¹², and national guidelines in Australia and New Zealand give recommendations that all healthcare practices have systems in place to identify smokers, that patients are asked about smoking, that advice to quit be given and cessation help provided^{43,44}.

Three-step models for very brief smoking cessation support are recommended for health professionals treating smokers in Australia and New Zealand and may be utilised by anaesthetists in the perioperative period. In Australia, the 3-steps are Ask (about smoking), Advise (to quit) and Help (Refer to Quitline and/or prescribe pharmacotherapy)⁴³. New Zealand utilises a similar 3-step ABC approach of <u>A</u>sk (about smoking), <u>B</u>rief advice (to quit) and <u>C</u>essation support with strongly offer referral for behavioural support and pharmacotherapy⁴⁴. The Smoking Cessation Taskforce of the American Society of Anesthesiology developed a similar three-step cessation strategy (A-A-R=Ask, Advise, Refer) that may be used in everyday practice⁴⁵

A=Ask. Audits of smoker identification vary by institution, ranging from 25-86% of smokers being identified as such⁴⁶⁻⁴⁸.

A=Advise. By understanding the benefits of quitting before surgery, the likelihood of behavioural change prior to surgery may be increased⁴. Brief conversations about smoking increase quitting but the benefit of conversation is higher as the underlying quit rate is increased¹². Because quit rates tend to be higher before surgery⁴², the effect of physician advice may be more powerful³⁸.

R=Refer. An awareness of locally available smoking cessation support and referral of patients is likely to significantly improve quit rates. In randomised controlled trials of perioperative quit programs, more intensive interventions produced significantly greater abstinence²⁶. Online referrals are easy options at Quitlines in Australia and New Zealand.

Australia: https://www.quit.org.au/referral-form/

New Zealand: https://quit.org.nz/info-resources/quitline-referral-form-apr-2016.docx?la=en

5.3.1 Cessation pharmacotherapy.

In Australia and New Zealand, approved tobacco cessation medications for NRT include varenicline and sustained-release preparations of bupropion hydrochloride^{43,44}. NRT is also approved as a smoking reduction aid; to be used in conjunction with cigarettes for those unable to quit abruptly but are in the process of reducing/quitting. Varenicline is the most effective form of single pharmacotherapy (monotherapy) for smoking cessation⁴³.

Combination NRT (slow-release patches plus immediate-release forms like mouth sprays or lozenges, in case of cravings) are more effective than NRT monotherapy and about as effective as varenicline for smoking cessation⁴⁹. Relatively simple dosing regimens, availability as over-the-counter medications and an abundance of studies in presurgical populations have increased their popularity in surgical settings. Guidelines for initiation of NRT in Australia and New Zealand are identical, with NRT monotherapy only recommended for smokers with low nicotine-dependency (<10 cigarettes/day plus <u>not</u> needing cigarettes within 30-minutes of waking from overnight sleep)^{43,44}

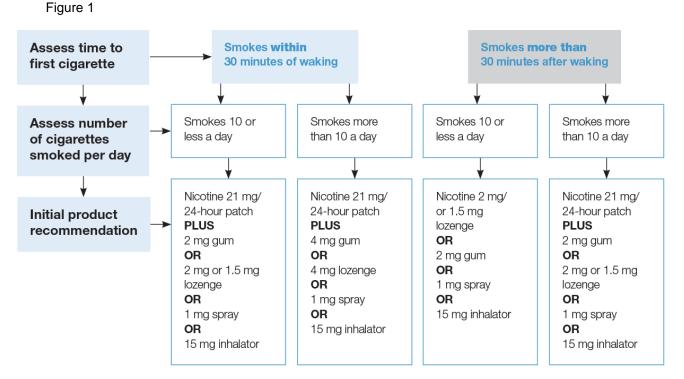


Figure 1 Ministry of Health, New Zealand. <u>Guide to prescribing nicotine replacement therapy (NRT)</u>. Wellington: Ministry of Health, 2014 and RACGP Supporting Smoking Cessation: a guide for health professionals. 2nd edition, 2014

5.3.2 Evidence for perioperative safety of NRT.

The potential of NRT-induced vasoconstriction and impaired wound healing has been raised as a concern, but there is an abundance of evidence that strongly supports its perioperative use; particularly if the alternative is continued smoking^{50,51}. While nicotine is both a vasoconstrictor and a psychoactive molecule that maintains tobacco addiction, impaired wound healing in smokers results from a variety of vasoactive compounds in smoke, as well as impaired inflammatory cellular responses and immune function²⁵. A large observational study that included over 25,000 surgical patients having preoperative NRT showed no increase in wound complications or other adverse events⁵².

5.3.3 Electronic cigarettes for smoking cessation in the perioperative period.

There are insufficient studies in perioperative settings to recommend e-cigarettes as cessation tools^{3,38}. Australian smokers scheduled for elective surgery perceived the perioperative use of e-cigarettes as safer than tobacco, and a novel way to quit⁵³.

In view of limited evidence, the recent update to the Australian smoking cessation guidelines recommended the use of e-cigarettes alongside behavioural support only for patients who had tried and failed to achieve smoking cessation with first-line therapy including behavioural support and TGA-approved pharmacotherapy but were still motivated to quit⁴³. Patient counselling should acknowledge the uncertainty surrounding vaping products' safety, quality and efficacy⁴³. Currently, no e-cigarette products are registered as therapeutic goods in Australia or New Zealand and they are legal in Australia only by prescription for the purpose of smoking cessation.

5.4 Electronic cigarettes and health consequences

Adverse health consequences of vaping include personal risks such as toxicity to the respiratory and cardiovascular systems, seizures, nicotine poisoning, nicotine addiction, as well as trauma or burns from malfunctioning devices⁵⁴. Youth e-cigarette use points to wider risks to public health including uptake in cigarette smoking and ex-smokers relapsing to combustible tobacco⁵⁵, as well as non-smoking young people initiating vaping being 3-times more likely to become regular tobacco users⁵⁴.

E-cigarettes contain single-use plastic and lithium batteries that are a source of pollution and fires⁵⁴.

E-liquids typically contain ingredients implicated in adverse health outcomes such as Popcorn Lung or bronchiolitis obliterans^{56,57}.

<u>E</u>-cigarette or <u>V</u>aping product use <u>A</u>ssociated <u>L</u>ung <u>I</u>njury (EVALI) has led to hospitalisations and deaths worldwide, mostly amongst younger people⁵⁴. Although most cases arise from e-liquids containing THC and the additive vitamin E acetate, some were associated with nicotine-containing liquids without either constituent⁵⁸. E-cigarette use has been associated with acute eosinophilic pneumonia⁵⁹. There is evidence of a tendency toward airway reactivity and bronchospasm, along with an impaired cough reflex and reduced ciliary function⁶⁰. Minor adverse effects like throat irritation, cough and increased sputum production are prevalent among vapers though more serious bronchial injuries and erythematous airway mucosa have also been seen⁶⁰.

The effects of vaping on cardiovascular disease are the subject of ongoing research but evidence suggests an increase in oxidative stress and endothelial dysfunction⁶¹. Vaping is also associated with lipogenesis, angiogenesis and inflammation, which may elevate the thrombosis risk⁶². Nicotine is responsible for the acute cardiovascular effects of vaping, leading to an increase in blood pressure and heart rate with a shift in the myocardial supply-demand balance⁶².

5.5 Literature search strategy

Background reading on tobacco science, policy and effects of public health was provided from a number of academic sources^{1,14,63} Searches for documents from the Australian Government (Australian Institute of Health and Welfare) and Ministry of Health (New Zealand) on tobacco, health and drug policy yielded further useful documents on tobacco use in each country.

Electronic databases (PubMed and Cochrane) were searched through to April 2023 for relevant English language randomised controlled trials and reviews using search terms including

"smoking", "tobacco", "vaping", "e-cig\$", "electronic cig\$", "preop\$", "periop\$", "postop\$", "quit\$", "cessation", "surgery", "outcome", "complication". Further references were obtained through examination of the bibliographies of relevant reviews and trials.

6. Summary

PG07 was revised based on the advice from the document development group. The current revision has considered the pre-anaesthesia consultation in the context of its impact on safety and patient outcomes. The recommendations in the guidelines are based on the application of the general principles in recognition of recent changes in practices and demands, as well as advances in technologies.

Related ANZCA documents

CP24 Policy for the development and review of professional documents PG09(G) Guideline on procedural sedation PS12(POM) Guideline on smoking as related to the perioperative period PG15(POM) Guideline for the perioperative care of patients selected for day stay procedures PS59(A) Position statement on roles in anaesthesia and perioperative care PS62(G) Position statement on cultural competence and cultural safety

References for Background Paper

Item 2 - PG07BP Pre-anaesthesia consultation BP

Further reading

Apfelbaum JL, Connis RT, Nickinovich DG, Pasternak LR, Arens JF, Caplan RA, et al. Practice advisory for preanesthesia evaluation: An updated report by the american society of anesthesiologists task force on preanesthesia evaluation. Anesthesiology. 2012;116(3):522-538.

Association of Anaesthetists of Great Britain and Ireland. AAGBI safety guideline. Pre-operative assessment and patient preparation: the role of the anaesthetist. London: Association of Anaesthetists of Great Britain and Ireland, 2010. Currently under review. Available from: <u>http://www.aagbi.org/sites/default/files/preop2010.pdf</u> Accessed 12 June 2024.

Australian Commission on Safety and Quality in Healthcare. Australian Charter of Healthcare Rights (second edition). Sydney: Australian Commission on Safety and Quality in Healthcare, 2020. Available from: https://www.safetyandquality.gov.au/our-work/partnering-consumers/australian-charter-healthcare-rights Accessed 12 June 2024.

Australian Society of Anaesthetists. Position Statement Minimum Facilities for Pre-anaesthesia Consultation ASA-PS03. 2010, revised 2019. Available from: <u>https://asa.org.au/wp-</u> <u>content/uploads/2024/05/ASA_PS03_Minimum-facilities-for-preanaesthesia-consultations-2.pdf</u> Accessed 12 June 2024.

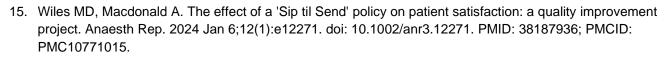
Hug CC, Jr. Rovenstine lecture: Patient values, hippocrates, science, and technology: What we (physicians) can do versus what we should do for the patient. Anesthesiology. 2000;93(2):556-564.

Jenkins K. Baker AB. Consent and anaesthetic risk. Anaesthesia. 2003;58(10):962-984.

Medical Council of New Zealand. Good medical practice. Wellington: Medical Council of New Zealand, 2021. Available from: <u>https://www.mcnz.org.nz/assets/standards/b3ad8bfba4/Good-Medical-Practice.pdf</u> Accessed 12 June 2024.

National Health and Medical Research Council. General guidelines for medical practitioners on providing information to patients. Canberra: National Health and Medical Research Council, 2004. Rescinded guideline. Available from the Australian Government Web Archive: https://webarchive.nla.gov.au/awa/20170816072344/https://www.nhmrc.gov.au/guidelines-publications/e57

Accessed 12 June 2024.


Venn, PJ (ed). Guidelines for the provision of anaesthetic services (GPAS). London: The Royal College of Anaesthetists, 2023. Available from: <u>https://rcoa.ac.uk/safety-standards-quality/guidance-resources/guidelines-provision-anaesthetic-services</u> Accessed 12 June 2024.

Item 3 - PG07 Appendix 1 - Fasting Guideline

Bibliography

- Joshi GP, Abdelmalak BB, Weigel WA, Harbell MW, Kuo CI, Soriano SG, et al. 2023 American Society of Anesthesiologists practice guidelines for preoperative fasting: carbohydrate-containing clear liquids with or without protein, chewing gum, and pediatric fasting duration - A modular update of the 2017 American Society of Anesthesiologists practice guidelines for preoperative fasting. Anesthesiology. 2023 Feb 1;138(2):132-151. Available from: <u>https://pubs.asahq.org/anesthesiology/article/138/2/132/137508/2023-American-Society-of-Anesthesiologists</u> Accessed 11 July 2024
- Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration: Application to Healthy Patients Undergoing Elective Procedures: An Updated Report by the American Society of Anesthesiologists Task Force on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration. Anesthesiology 2017; 126:376.
- 3. Smith I, Kranke P, Murat I, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology & Intensive Care. Eur J Anaesthesiol 2011 Aug; 28(8): 556 569.
- 4. Bhaskar SB, Bala PA. Fasting Guidelines: a review of practice over the past 10 years. European Journal of Anaesthesiology 2022 Aug; 39(8): 720-721.
- Association of Anaesthetists of Great Britain and Ireland. Pre-operative Assessment and Patient Preparation - The Role of the Anaesthetist 2010. Available at: <u>https://anaesthetists.org/Home/Resources-publications/Guidelines/Pre-operative-assessment-and-patient-preparation-the-role-of-the-anaesthetist-2</u> (Currently under review). Accessed 11 July 2024
- 6. Dobson G, Chau A, Denomme J. et al. Guidelines to the Practice of Anesthesia: Revised Edition 2024. Can J Anesth 2024; 70: 8-54.
- Rosen D, Gamble J, Matava C, Canadian Pediatric Anesthesia Society Fasting Guidelines Working Group. Canadian Pediatric Anesthesia Society statement on clear fluid fasting for elective pediatric anesthesia. Can J Anaesth 2019; 66:991.
- 8. Rüggeberg A, Meybohm P, Nickel EA. Preoperative fasting and the risk of pulmonary aspiration a narrative review of historical concepts, physiological effects, and new perspectives. BJA Open. 2024 May 5;10:100282. doi: 10.1016/j.bjao.2024.100282.
- Frykholm P, Disma N, Andersson H, Beck C, Bouvet L, Cercueil E, et al. Pre-operative fasting in children: A guideline from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol. 2022 Jan 1;39(1):4-25.
- Merchant RN, Chima N, Ljungqvist O, Kok JN. Preoperative Fasting Practices Across Three Anesthesia Societies: Survey of Practitioners. JMIR Perioper Med 2020;3(1). Available from: <u>https://periop.jmir.org/2020/1/e15905/</u> Accessed 11 July 2024
- 11. Wilson GR, Dorrington KL. Starvation before surgery: is our practice based on evidence? BJA Education. 2017 Aug;17(8):275–82.
- 12. McCracken G, Montgomery J. Postoperative nausea after vomiting after unrestricted clear fluids before day surgery: A retrospective analysis. Eur J Anesthesiol. 2018 May; 35(5): 337 342.
- Morrison CE, Ritchie-McLean S, Jha A, Mythen M. Two hours too long: time to review fasting guidelines for clear fluids. Br J Anaesth. 2020 Jan 17:S0007-0912(19)31004-9. Available from: https://www.bjanaesthesia.org/article/S0007-0912(19)31004-9/fulltext Accessed 11 July 2024
- 14. Checketts MR. Fluid fasting before surgery: the ultimate example of medical sophistry? Anaesthesia 2023; 78:147-149.

- 16. Australian & New Zealand Hip Fracture Registry. Preoperative Fasting Sprint Audit, 2023. Available from: <u>https://anzhfr.org/wp-content/uploads/sites/1164/2023/11/ANZHFR-Preoperative-Fasting-Sprint-Audit-results_FINAL.pdf</u> Accessed 11 July 2024
- 17. Perera H, Wusu A, Mohammad A, Qulaghassi MZ, Abdulkarim A. An Audit on the Pre-operative Fasting Time of Trauma-List Orthopaedic Patients at a District General Hospital in Chichester, United Kingdom. Cureus. 2023 Nov 5;15(11):e48327. doi: 10.7759/cureus.48327. PMID: 38024025; PMCID: PMC10653621.
- 18. Rüggeberg, A. and Nickel, E. (2022). Unrestricted drinking before surgery: an iterative quality improvement study. Anaesthesia, 77(12), 1386-1394. https://doi.org/10.1111/anae.15855
- Daly S, Mohamed O, Loughrey J, Kearsley R, Drew T. 'Sip 'til Send': a prospective study of the effect of a liberal fluid fasting policy on patient reported and haemodynamic variables at elective caesarean delivery. International Journal of Obstetric Anesthesia. 2024 Feb;57:103956.
- 20. Bouvet L, Loubradou E, Desgranges FP, Chassard D. Effect of gum chewing on gastric volume and emptying: a prospective randomized crossover study. Br J Anaesth. 2017 Nov 1;119(5):928-933.
- Deepu S. Ushakumari, Robert N. Sladen; ASA Consensus-based Guidance on Preoperative Management of Patients on Glucagon-like Peptide-1 Receptor Agonists. *Anesthesiology* 2024; 140:346–348 doi: <u>https://doi.org/10.1097/ALN.00000000004776</u> Accessed 11 July 2024
- 22. Milder DA, Milder TY, Liang S, Kam PCA. Glucagon-like peptide-1 receptor agonists; a narrative review of clinical pharmacology and implications for perioperative practice. Anaesthesia 2024 May; 79 (&); 735 747.
- Joshi GP. Anesthetic Considerations in Adult Patients on Glucagon-Like Peptide-1 Receptor Agonists: Gastrointestinal Focus. Anesth Analg. 2024 Jan 1;138(1):216-220. doi: 10.1213/ANE.00000000006810. Epub 2023 Dec 15.
- Pimenta G et al. Residual Gastric Volume in Morbidly Obese Diabetics after an overnight fast or 3 hours of a Carbohydrate-enriched supplement: A randomised crossover pilot study. Arq Bras Cir Dig. 2024 Feb 5; 36: e1791.
- 25. Sidhu NS, Pozaroszczyk AJ. "Do you feel hungry?" Using gastric ultrasound to eliminate guesswork in perioperative airway management. 2023 Australasian Anaesthesia from p.115 (review and accompanying references).
- 26. Australian and New Zealand College of Anaesthetists. PG47 Guideline on training and practice of perioperative point-of-care ultrasound. 2024 (under development).
- 27. Snowden C, Swart M. Getting It Right First Time (GIRFT). Anaesthesia and Perioperative Medicine GIRFT Programme National Specialty Report. Sep 2021. Centre for Perioperative Care (CPOC). Available from: <u>https://www.cpoc.org.uk/sites/cpoc/files/documents/2021-10/GIRF_APOM_Report_Sep2021.pdf</u> Accessed 11 July 2024.
- Frykholm P, Disma N. Clear Rules for Clear Fluids Fasting in Children. Br J Anaesth. 2024 Jan; 132(1); pp. 56-75.
- 29. Segaran E, Barker I, Hartle A. Optimising enteral nutrition in critically ill patients by reducing fasting times. Journal of the Intensive Care Society, 2016, Vol 17(1), 38-43.
- 30. Markman P, Grimmet W, Ramsay D, Sartain J, Stoeter D, Jaramillo C, et al. Sip Til Send: Commentary from a national perspective. ANZCA Bulletin 2023. 32(4):31–2.
- 31. Friedrich S, Meybohm P, Kranke P. Nulla Per Os (NPO) Guidelines: Time to revisit? Current Opinion in Anaesthesiology 2020 Dec; 33(6): 740-745.

 National Guideline Centre (UK). Evidence review for pre-operative fasting: Perioperative care in adults: Evidence review H. London: National Institute for Health and Care Excellence (NICE); 2020 Aug. Available from: <u>https://www.nice.org.uk/guidance/ng180/evidence/h-preoperative-fasting-pdf-8833151061</u> Accessed 11 July 2024

Further reading - Fasting

ANZCA

Bode K, Gerhards M, Doering M, Lucas J, Tijssen J, Dagres N, Hilbert S, Richter S, Nedios S, Lurz J, Moscoso-Luduena C, Arya A, Shamloo AS, Hindricks G. A randomized trial of non-fasting vs. fasting for cardiac implantable electronic device procedures (Fast-CIED Study). Europace. 2022 Oct 13;24(10):1617-1626. doi: 10.1093/europace/euac081.

Sands R, Wiltshire R, Isherwood P. Preoperative fasting guidelines in National Health Service England Trusts; a thirst for progress. Br J Anaesth, 129 (2022), pp. e100-e102

Zeraatkar D, Shanthanna H, Mbuagbaw L, Morgan RL, Reddy D, Couban R, et al. Preoperative fasting for prevention of perioperative complications in adults (Protocol). Cochrane Database of Systematic Reviews 2020, Issue 10. Available from: <u>https://www.cochrane.org/CD013772/ANAESTH_preoperative-fasting-prevention-perioperative-complications-adults</u> Accessed 11 July 2024

Item 4 - PG07 Appendix 2 – Effect of anaesthesia on breastfeeding

Bibliography

- 1. Mitchell J, Jones W, Winkley E, Kinsella SM. Guideline on anaesthesia and sedation in breastfeeding women 2020: Guideline from the Association of Anaesthetists. *Anaesthesia.* 2020;75:1482-1493.
- Therapeutic Guidelines LTD. eTG Complete March 2021 Edition Pregnancy and Breastfeeding. Melbourne, Australia.
- 3. Medsafe: New Zealand Medicines and Medical Devices Safety Authority. Ministry of Health, New Zealand Government. Available at: <u>https://www.medsafe.govt.nz/</u> Accessed 12 June 2024.
- 4. Drugs and Lactation Database (LactMed). Bethesda (MD): National Library of Medicine (US); Available at: https://www.ncbi.nlm.nih.gov/books/NBK501922/ Accessed 12 June 2024.
- Society for Paediatric Anaesthesia in New Zealand and Australia. Tramadol and Breastfeeding: SPANZA's Advisory on Tramadol – Use of Tramadol during breastfeeding and in the Neonate 15 June 2017. Available from: <u>https://www.spanza.org.au/wp-content/uploads/2022/12/SPANZAbreastfeedresponse.pdf</u> Accessed 12 June 2024.
- ANZCA Obstetric Special Interest Group. Statement regarding the use of Tramadol in breastfeeding women. July 2017. Available at: <u>https://libguides.anzca.edu.au/ld.php?content_id=48310239</u> Accessed 12 June 2024.

Further reading - Breastfeeding

Apfelbaum JL, Connis RT, Nickinovich DG, Pasternak LR, Arens JF, Caplan RA, et al. Practice advisory for preanesthesia evaluation: An updated report by the American Society of Anesthesiologists task force on preanesthesia evaluation. Anesthesiology. 2012;116(3):522-538.

Apfelbaum JL, Caplan RA, Connis RT, Epstein BS, Nickinovich DG, Warner MA. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: Application to healthy patients undergoing elective procedures. An updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters Anesthesiology. 2011; 114:495–511.

Association of Anaesthetists of Great Britain and Ireland (AAGBI). AAGBI safety guideline: pre-operative assessment and patient preparation: the role of the anaesthetist. London: Association of Anaesthetists of Great Britain and Ireland, 2010. Available from: <u>http://www.aagbi.org/sites/default/files/preop2010.pdf</u> Accessed 13 June 2024.

Hug CC Jr. Rovenstine lecture: Patient values, Hippocrates, science, and technology: What we (physicians) can do versus what we should do for the patient. Anesthesiology. 2000;93(2):556-564.

Jenkins K. Baker AB. Consent and anaesthetic risk. Anaesthesia. 2003;58(10):962-984.

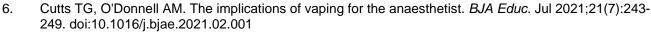
National Health and Medical Research Council (NHMRC). General guidelines for medical practitioners on providing information to patients. Canberra: NHMRC, 2004. Rescinded guideline. Available from the Australian Government Web Archive:

https://webarchive.nla.gov.au/awa/20170816072344/https://www.nhmrc.gov.au/guidelines-publications/e57 Accessed 13 June 2024.

Royal College of Nursing. Clinical Practice Guidelines: Perioperative fasting in Adults and Children. London, Royal College of Nursing. 2005 Nov. Available from: <u>https://media.gosh.nhs.uk/documents/RCN_Perioperative_Fasting_Adults_and_Children.pdf</u> Accessed 13 June

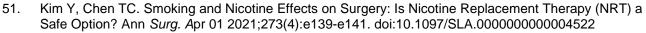
Royal College of Anaesthetists. Venn PJ, editor. Guidelines for the provision of anaesthetic services (GPAS). 2021 Jul 12, updated 2023 Jan 31. Available from: <u>https://rcoa.ac.uk/safety-standards-quality/guidance-resources/guidelines-provision-anaesthetic-services</u> Accessed 13 June 2024.

Smith I, Kranke P, Murat I, Smith A, O'Sullivan G, Søreide E, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2011;28(8):556–569 Available from: http://www.oegari.at/web_files/dateiarchiv/editor/esa_fasting_guideline.pdf Accessed 13 June 2024.


Thomas H, Plummer C, Wright IJ, Foley P, Turley AJ. Guidelines for the peri-operative management of people with cardiac implantable electronic devices: Guidelines from the British Heart Rhythm Society. Anaesthesia. 2022 Apr 16. Available from: <u>https://associationofanaesthetists-</u>publications.onlinelibrary.wiley.com/doi/10.1111/anae.15728. Accessed 13 June 2024.

Item 5 - PG07 Appendix 3 – Smoking

Bibliography


2024.

- 1. Drope J, Hamill S, Chaloupka F, et al. *The Tobacco Atlas.* 7th ed. Vital Strategies and Tobacconomics; 2022. Available from: <u>https://tobaccoatlas.org/</u> Accessed 12 June 2024.
- 2. Dobson GP. Trauma of major surgery: A global problem that is not going away. *Int J Surg.* Sep 2020;81:47-54. doi:10.1016/j.ijsu.2020.07.017
- 3. Warner DO. Anesthesiologists and the Other Pandemic: Tobacco Use. *Anesthesiology*. Oct 01 2022;137(4):484-508. doi:10.1097/ALN.00000000004346
- 4. Webb AR, Robertson N, Sparrow M. Smokers know little of their increased surgical risks and may quit on surgical advice. *ANZ J Surg.* Oct 2013;83(10):753-7. doi:10.1111/ans.12096
- 5. Shi Y, Warner DO. Surgery as a teachable moment for smoking cessation. *Anesthesiology*. Jan 2010;112(1):102-7. doi:10.1097/ALN.0b013e3181c61cf9

- GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. *Lancet*. 06 19 2021;397(10292):2337-2360. doi:10.1016/S0140-6736(21)01169-7
- 8. Data from: Ministry of Health. 2022. Annual Data Explorer 2021/22: New Zealand Health Survey [Data File]: Available from: <u>https://www.health.govt.nz/publication/annual-update-key-results-2021-22-new-zealand-health-survey</u> *Wellington*. Accessed 12 June 2024.
- 9. Whetton S et al. *Identifying the social costs of tobacco use to Australia in 2015/16* National Drug Research Institute, Curtin University; 2019. Available at: <u>T273.pdf (curtin.edu.au)</u> Accessed 12 June 2024.
- 10. Vineis P, Alavanja M, Buffler P, et al. Tobacco and cancer: recent epidemiological evidence. *J Natl Cancer Inst.* Jan 2004;96(2):99-106.
- 11. Jha P, Ramasundarahettige C, Landsman V, et al. 21st-century hazards of smoking and benefits of cessation in the United States. *N Engl J Med.* Jan 2013;368(4):341-50. doi:10.1056/NEJMsa1211128
- 12. Stead LF, Buitrago D, Preciado N, Sanchez G, Hartmann-Boyce J, Lancaster T. Physician advice for smoking cessation. *Cochrane Database Syst Rev.* 2013;5:CD000165. doi:10.1002/14651858.CD000165.pub4
- 13. Australian Institute of Health and Welfare (2020) National Drug Strategy Household Survey 2019, AIHW, Available from: <u>National Drug Strategy Household Survey 2019</u>, <u>Summary - Australian Institute of Health</u> and Welfare (aihw.gov.au) Accessed 12 June 2024.
- 14. Latt N. Addiction medicine. Oxford specialist handbooks. Oxford University Press; 2009:xxxi, 459 p.
- 15. Webb A. Smoking and surgery: time to clear the air. In: Riley R, ed. *Australasian Anaesthesia 2011*. ANZCA; 2012:115-124.
- Wolfenden L, Wiggers J, Knight J, et al. Increasing smoking cessation care in a preoperative clinic: a randomized controlled trial. *Prev Med.* Jul 2005;41(1):284-90. doi:S0091-7435(04)00581-X [pii]10.1016/j.ypmed.2004.11.011
- 17. Myles PS, Iacono GA, Hunt JO, et al. Risk of respiratory complications and wound infection in patients undergoing ambulatory surgery: smokers versus nonsmokers. Anesthesiology. Oct 2002;97(4):842-7. doi:00000542-200210000-00015 [pii]
- 18. Grønkjær M, Eliasen M, Skov-Ettrup LS, et al. Preoperative smoking status and postoperative complications: a systematic review and meta-analysis. Ann Surg. Jan 2014;259(1):52-71. doi:10.1097/SLA.0b013e3182911913
- Nolan MB, Martin DP, Thompson R, Schroeder DR, Hanson AC, Warner DO. Association Between Smoking Status, Preoperative Exhaled Carbon Monoxide Levels, and Postoperative Surgical Site Infection in Patients Undergoing Elective Surgery. JAMA Surg. May 01 2017;152(5):476-483. doi:10.1001/jamasurg.2016.5704
- Chiswell C, Akram Y. Impact of environmental tobacco smoke exposure on anaesthetic and surgical outcomes in children: a systematic review and meta-analysis. Arch Dis Child. Feb 2017;102(2):123-130. doi:10.1136/archdischild-2016-310687
- 21. von Ungern-Sternberg BS, Boda K, Chambers NA, et al. Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study. Lancet. Sep 2010;376(9743):773-83. doi:10.1016/s0140-6736(10)61193-2
- 22. Lee A, Chui PT, Chiu CH, et al. Risk of perioperative respiratory complications and postoperative morbidity in a cohort of adults exposed to passive smoking. Ann Surg. Feb 2015;261(2):297-303. doi:10.1097/SLA.00000000000544
- Troiano C, Jaleel Z, Spiegel JH. Association of Electronic Cigarette Vaping and Cigarette Smoking With Decreased Random Flap Viability in Rats. JAMA Facial Plast Surg. Jan 01 2019;21(1):5-10. doi:10.1001/jamafacial.2018.1179
- 24. Helm C, Labovsky K, Thakrar PD, Diaz CD. E-cigarette, or Vaping, Product Use-Associated Lung Injury-Lessons Learned: A Case Series. A *A Pract.* Jun 2020;14(8):e01242. doi:10.1213/XAA.00000000001242
- Sorensen LT, Karlsmark T, Gottrup F. Abstinence from smoking reduces incisional wound infection: a randomized controlled trial. Ann Surg. Jul 2003;238(1):1-5. doi:00000658-200307000-00001 [pii] 10.1097/01.SLA.0000074980.39700.31
- 26. Thomsen T, Villebro N, Møller AM. Interventions for preoperative smoking cessation. Co*chrane Database Syst Rev.* Mar 2014;(3):CD002294. doi:10.1002/14651858.CD002294.pub4
- 27. Warner DO. Perioperative abstinence from cigarettes: physiologic and clinical consequences. An*esthesiology.* Feb 2006;104(2):356-67. doi:00000542-200602000-00023 [pii]

- Kuri M, Nakagawa M, Tanaka H, Hasuo S, Kishi Y. Determination of the duration of preoperative smoking cessation to improve wound healing after head and neck surgery. An*esthesiology*. May 2005;102(5):892-6.
- 30. Yamashita S, Yamaguchi H, Sakaguchi M, et al. Effect of smoking on intraoperative sputum and postoperative pulmonary complication in minor surgical patients. Re*spir Med.* Aug 2004;98(8):760-6.
- 31. Buist AS, Sexton GJ, Nagy JM, Ross BB. The effect of smoking cessation and modification on lung function. Am *Rev Respir Dis.* Jul 1976;114(1):115-22.
- 32. Kotani N, Kushikata T, Hashimoto H, Sessler DI, Muraoka M, Matsuki A. Recovery of intraoperative microbicidal and inflammatory functions of alveolar immune cells after a tobacco smoke-free period. Anesthesiology. Jun 2001;94(6):999-1006.
- 33. Warner MA, Divertie MB, Tinker JH. Preoperative cessation of smoking and pulmonary complications in coronary artery bypass patients. An*esthesiology*. Apr 1984;60(4):380-3.
- 34. Mitchell C, Garrahy P, Peake P. Postoperative respiratory morbidity: identification and risk factors. Aust N Z J Surg. Apr 1982;52(2):203-9.
- 35. Bluman LG, Mosca L, Newman N, Simon DG. Preoperative smoking habits and postoperative pulmonary complications. Chest. Apr 1998;113(4):883-9.
- Myers K, Hajek P, Hinds C, McRobbie H. Stopping Smoking Shortly Before Surgery and Postoperative Complications: A Systematic Review and Meta-analysis. Arch Intern Med. Jun 2011;171(11):983-9. doi:archinternmed.2011.97 [pii] 10.1001/archinternmed.2011.97
- Wong J, Lam DP, Abrishami A, Chan MT, Chung F. Short-term preoperative smoking cessation and postoperative complications: a systematic review and meta-analysis. Can *J Anaesth. Mar* 2012;59(3):268-79. doi:10.1007/s12630-011-9652-x
- Wong J, An D, Urman RD, et al. Society for Perioperative Assessment and Quality Improvement (SPAQI) Consensus Statement on Perioperative Smoking Cessation. Anesth Analg. 09 2020;131(3):955-968. doi:10.1213/ANE.00000000004508
- Warner MA, Offord KP, Warner ME, Lennon RL, Conover MA, Jansson-Schumacher U. Role of preoperative cessation of smoking and other factors in postoperative pulmonary complications: a blinded prospective study of coronary artery bypass patients. Mayo Clin Proc. Jun 1989;64(6):609-16.
- 40. Shi Y, Warner DO. Brief preoperative smoking abstinence: is there a dilemma? Ane*sth Analg. Dec* 2011;113(6):1348-51. doi:ANE.0b013e31822d6798 [pii] 10.1213/ANE.0b013e31822d6798
- 41. Smith AL, Chapman S. Quitting smoking unassisted: the 50-year research neglect of a major public health phenomenon. JAMA. Jan 08 2014;311(2):137-8. doi:10.1001/jama.2013.282618
- 42. Webb AR, Coward L, Meanger D, Leong S, White SL, Borland R. Offering mailed nicotine replacement therapy and Quitline support before elective surgery: a randomised controlled trial. Med *J Aust. 0*4 18 2022;216(7):357-363. doi:10.5694/mja2.51453
- 43. Zwar N, Richmond R, Borland R, et al. The Royal Australian College of General Practitioners. Supporting smoking cessation: A guide for health professionals. 2nd edn. East Melbourne, Vic: RACGP, Available from: <u>RACGP Supporting smoking cessation: A guide for health professionals</u> Accessed 12 June 2024.
- 44. Jenkins M, New Zealand. Ministry of Health. Tobacco Policy and Implementation Team. Implementing the ABC approach for smoking cessation : framework and work programme. 2009; Available from : Implementing the ABC Approach for Smoking Cessation: Framework and work programme | Ministry of Health NZ Accessed 12 June 2024.
- 45. Warner DO, American Society of Anesthestiologists Smoking Cessation Initiative Task Force. Feasibility of tobacco interventions in anesthesiology practices: a pilot study. Anesthesiology. Jun 2009;110(6):1223-8. doi:10.1097/ALN.0b013e3181a5d03e
- 46. Ahluwalia JS, Gibson CA, Kenney RE, Wallace DD, Resnicow K. Smoking status as a vital sign. J Gen Intern Med. Jul 1999;14(7):402-8. doi:jgi9078 [pii]
- 47. Simmonds M, Petterson J. Anaesthetists' records of pre-operative assessment. Clin Perform Qual Health Care. 2000;8(1):22-7.
- 48. Webb A, Wilson AC. The addition of tick-boxes related to tobacco cessation improves smoking-related documentation in the anaesthesia chart. Anaesth Intensive Care. 01 2017;45(1):52-57. doi:10.1177/0310057X1704500108
- 49. Cahill K, Stevens S, Perera R, Lancaster T. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev. May 2013;(5):CD009329. doi:10.1002/14651858.CD009329.pub2
- 50. Nolan MB, Warner DO. Safety and Efficacy of Nicotine Replacement Therapy in the Perioperative Period: A Narrative Review. Mayo Clin Proc. Nov 2015;90(11):1553-61. doi:10.1016/j.mayocp.2015.08.003

- 52. Stefan MS, Pack Q, Shieh MS, et al. The Association of Nicotine Replacement Therapy With Outcomes Among Smokers Hospitalized for a Major Surgical Procedure. Chest. *May* 2020;157(5):1354-1361. doi:10.1016/j.chest.2019.10.054
- 53. Luxton NA, Shih P, Rahman MA, Adams R, MacKenzie R. Use of electronic cigarettes in the perioperative period: A mixed-method study exploring perceptions of cardiothoracic patients in Australia. Tob *Induc Dis.* 2018;16:53. doi:10.18332/tid/98957
- 54. Banks E, Yazidjoglou A, Brown S, et al. Electronic cigarettes and health outcomes: umbrella and systematic review of the global evidence. Med *J Aust. Apr* 03 2023;218(6):267-275. doi:10.5694/mja2.51890
- 55. Baenziger ON, Ford L, Yazidjoglou A, Joshy G, Banks E. E-cigarette use and combustible tobacco cigarette smoking uptake among non-smokers, including relapse in former smokers: umbrella review, systematic review and meta-analysis. BMJ *Open. M*ar 30 2021;11(3):e045603. doi:10.1136/bmjopen-2020-045603
- Tackett AP, Keller-Hamilton B, Smith CE, et al. Evaluation of Respiratory Symptoms Among Youth e-Cigarette Users. JAMA Netw Open. Oct 01 2020;3(10):e2020671. doi:10.1001/jamanetworkopen.2020.20671
- 57. Kosmider L, Sobczak A, Prokopowicz A, et al. Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, benzaldehyde. Tho*rax. A*pr 2016;71(4):376-7. doi:10.1136/thoraxjnl-2015-207895
- Krishnasamy VP, Hallowell BD, Ko JY, et al. Update: Characteristics of a Nationwide Outbreak of Ecigarette, or Vaping, Product Use-Associated Lung Injury - United States, August 2019-January 2020. MMWR Morb Mortal Wkly Rep. Jan 24 2020;69(3):90-94. doi:10.15585/mmwr.mm6903e2
- 59. Wolf M, Richards J. Acute Eosinophilic Pneumonia Due to Vaping-Associated Lung Injury. J Crit Care Med (Targu Mures). Oct 2020;6(4):259-262. doi:10.2478/jccm-2020-0037
- 60. Gotts JE, Jordt SE, McConnell R, Tarran R. What are the respiratory effects of e-cigarettes? BMJ. Sep 30 2019;366:I5275. doi:10.1136/bmj.I5275
- 61. Echeagaray O, Savko C, Gallo Á, Sussman M. Cardiovascular consequences of vaping. Cur*r Opin Cardiol. May* 01 2022;37(3):227-235. doi:10.1097/HCO.000000000000952
- 62. Qasim H, Karim ZA, Rivera JO, Khasawneh FT, Alshbool FZ. Impact of Electronic Cigarettes on the Cardiovascular System. J Am Heart Assoc. Aug 30 2017;6(9)doi:10.1161/JAHA.117.006353
- 63. Boyle P. Tobacco : science, policy and public health. 2nd ed. ed. Oxford University Press; 2010.

Document Development Group - PG07 Pre-anaesthesia consultation

- Dr Vanessa Beavis (Lead) Dr Peter Roessler (2023) / Prof David A Scott (2024) Dr Joshua Chew Dr Nicolas Rogers Dr Jeremy Fernando Dr Renee Franklin Dr Amanda Gimblett A/Prof Elizabeth Hessian A/Prof Phillipa Hore
- Dr Mohua Jain

Expert group (Appendix 1 – Fasting guideline)

Dr Mohua Jain (Expert group – Lead) Dr Peter Roessler (2023) / Prof David A Scott (2024) A/Prof Phillipa Hore Dr Philip Ragg

Expert group (Appendix 2 – Effect of anaesthesia on breastfeeding)

A/Prof Victoria Eley (Expert group – Lead) Dr Peter Roessler Dr Caroline Ariaens

Expert group (Appendix 3 – Guideline on smoking as related to the perioperative period)

A/Prof Ashley Webb (Expert group – Lead) Dr Trent Cutts Dr Peter Roessler

Professional documents of the Australian and New Zealand College of Anaesthetists (ANZCA) are intended to apply wherever anaesthesia is administered and perioperative medicine practised within Australia and New Zealand. It is the responsibility of each practitioner to have express regard to the particular circumstances of each case, and the application of these ANZCA documents in each case. It is recognised that there may be exceptional situations (for example, some emergencies) in which the interests of patients override the requirement for compliance with some or all of these ANZCA documents. Each document is prepared in the context of the entire body of the college's professional documents, and should be interpreted in this way.

ANZCA professional documents are reviewed from time to time, and it is the responsibility of each practitioner to ensure that he or she has obtained the current version which is available from the college website (www.anzca.edu.au). The professional documents have been prepared having regard to the information available at the time of their preparation, and practitioners should therefore take into account any information that may have been published or has become available subsequently.

Whilst ANZCA endeavours to ensure that its professional documents are as current as possible at the time of their preparation, it takes no responsibility for matters arising from changed circumstances or information or material which may have become available subsequently.

2016
2017
June 2024
June 2024

© Copyright 2023 – Australian and New Zealand College of Anaesthetists. All rights reserved.

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ANZCA. Requests and inquiries concerning reproduction and rights should be addressed to the Chief Executive Officer, Australian and New Zealand College of Anaesthetists, 630 St Kilda Road, Melbourne, Victoria 3004, Australia. Email: <u>ceo@anzca.edu.au</u>

ANZCA website: www.anzca.edu.au